Rapid and Efficient Computation of Cell Paths During Ultrasonic Focusing

Author:

Babbs Charles F.1,Lang Mary V.1ORCID

Affiliation:

1. Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA

Abstract

This biophysical analysis explores the first-principles physics of movement of white blood cell sized particles, suspended in an aqueous fluid and experiencing progressive or standing waves of acoustic pressure. In many current applications the cells are gradually nudged or herded toward the nodes of the standing wave, providing a degree of acoustic focusing and concentration of the cells in layers perpendicular to the direction of sound propagation. Here the underlying biomechanics of this phenomenon are analyzed specifically for the viscous regime of water and for small diameter microscopic spheroids such as living cells. The resulting mathematical model leads to a single algebraic expression for the creep or drift velocity as a function of sound frequency, amplitude, wavelength, fluid viscosity, boundary dimensions, and boundary reflectivity. This expression can be integrated numerically by a simple and fast computer algorithm to demonstrate net movement of particles as a function of time, providing a guide to optimization in a variety of emerging applications of ultrasonic cell focusing.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3