Fast and Accurate U-Net Model for Fetal Ultrasound Image Segmentation

Author:

Ashkani Chenarlogh Vahid1,Ghelich Oghli Mostafa12ORCID,Shabanzadeh Ali1,Sirjani Nasim1ORCID,Akhavan Ardavan1,Shiri Isaac3,Arabi Hossein3,Sanei Taheri Morteza4,Tarzamni Mohammad Kazem5

Affiliation:

1. Research and Development Department, Med Fanavarn Plus Co., Karaj, Iran

2. Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium

3. Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland

4. Department of Radiology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

5. Department of Radiology, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran

Abstract

U-Net based algorithms, due to their complex computations, include limitations when they are used in clinical devices. In this paper, we addressed this problem through a novel U-Net based architecture that called fast and accurate U-Net for medical image segmentation task. The proposed fast and accurate U-Net model contains four tuned 2D-convolutional, 2D-transposed convolutional, and batch normalization layers as its main layers. There are four blocks in the encoder-decoder path. The results of our proposed architecture were evaluated using a prepared dataset for head circumference and abdominal circumference segmentation tasks, and a public dataset (HC18-Grand challenge dataset) for fetal head circumference measurement. The proposed fast network significantly improved the processing time in comparison with U-Net, dilated U-Net, R2U-Net, attention U-Net, and MFP U-Net. It took 0.47 seconds for segmenting a fetal abdominal image. In addition, over the prepared dataset using the proposed accurate model, Dice and Jaccard coefficients were 97.62% and 95.43% for fetal head segmentation, 95.07%, and 91.99% for fetal abdominal segmentation. Moreover, we have obtained the Dice and Jaccard coefficients of 97.45% and 95.00% using the public HC18-Grand challenge dataset. Based on the obtained results, we have concluded that a fine-tuned and a simple well-structured model used in clinical devices can outperform complex models.

Funder

Med Fanavaran Plus

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3