Scanning Electric Conductivity Gradients with Ultrasonically-Induced Lorentz Force

Author:

Montalibet A.1,Jossinet J.1,Matias A.1

Affiliation:

1. Institut National de la Santé et de la Recherche Médicale French Institute of Health and Medical Research INSERM U556 151 cours Albert Thomas 69424 Lyon cedex 03, France

Abstract

The ions in a fluid element oscillating under the effect of a sound wave in the presence of a magnetic field are submitted to Lorentz force. This gives rise to a bulk current density proportional to the medium's electric conductivity. In the present study, the integrality of this interaction current was collected using a pair of plane electrodes located on opposite sides of the sample. A focused transducer produced ultrasound bursts of 10 μs duration, 500 kHz frequency and 1.5 MPa peak pressure. The magnetic field was created by a purpose-built 0.35 T permanent magnet. Wiener inverse filtering was used to retrieve the system response from the recorded waveforms. The final signal was shown to be proportional to the gradient of σ/ρ along ultrasound propagation axis. Electric conductivity, σ, predominantly controls this parameter since mass density, ρ, does not vary in great proportions in biological media. Rectangular blocks of Agar gel and a layered bacon sample were used as models of biological media. The signals obtained in gel blocks had a longitudinal spatial resolution better than 1 mm. The successive layers of the bacon sample were clearly resolved. The advantages of this new modality for tissue characterization include the permeability of body tissue to magnetic field and ultrasound, the harmlessness of the applied fields and the improved spatial resolution in the measurement of a tissue's electric conductivity distribution.

Publisher

SAGE Publications

Subject

Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3