Monitoring Thermally-Induced Lesions with Supersonic Shear Imaging

Author:

Bercoff J.1,Pernot M.1,Tanter M.1,Fink M.1

Affiliation:

1. Laboratoire Ondes et Acoustique (LOA) ESPCI, C.N.R.S UMR 7587, France University Paris VII Paris 75005, France

Abstract

Thermally-induced lesions are generally stiffer than surrounding tissues. We propose here to use the supersonic shear imaging technique (SSI) for monitoring high-intensity focused ultrasound (HIFU) therapy. This new elasticity imaging technique is based on remotely creating shear sources using an acoustic radiation force at different locations in the medium. In these experiments, an HIFU probe is used to generate lesions in fresh tissue samples. A diagnostic transducer, controlled by our ultrafast scanner, is located in the therapeutic probe focal plane. It is used for both generating the shear waves and imaging the resulting propagation at frame rates reaching 5,000 images/s. Movies of the shear wave propagation can be computed off-line. The therapeutic and imaging sequences are interleaved and a set of wave propagation movies is performed during the heating process. From each movie, elasticity estimations have been performed using an inversion algorithm. It demonstrates the feasibility of detecting and quantifying the hardness of HIFU-induced lesions using SSI.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Measuring Tissue Temperature with Ultrasound;The Application of Heat in Oncology;2023-09-15

2. High-intensity focused ultrasound for medical therapy;Power Ultrasonics;2023

3. Radiation Force;Pressure Oscillation in Biomedical Diagnostics and Therapy;2022-08-05

4. A review of thermal impact of surface acoustic waves on microlitre droplets in medical applications;Advances in Mechanical Engineering;2022-08

5. Alternatives for MRI in Prostate Cancer Diagnostics—Review of Current Ultrasound-Based Techniques;Cancers;2022-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3