An experimental study of the load and heat influence from combustion on engine friction

Author:

Allmaier H1,Knauder C1,Salhofer S1,Reich FM1,Schalk E2,Ofner H2,Wagner A3

Affiliation:

1. Virtual Vehicle Research Center, Graz, Austria

2. AVL List GmbH, Graz, Austria

3. TU-Graz - Institute for Combustion Engines and Thermodynamics, Graz, Austria

Abstract

The friction power losses of a turbo-charged heavy-duty diesel engine of the 13 litre class are investigated both by fired engine tests as well as by pressurized motoring tests. During pressurized motoring compressed air is applied to the engine intake which creates loads comparable with fired operation but without the strong and changing thermal influence of combustion. By using this combined approach the influence of the load and the thermal influence of the combustion can be studied separately for the first time. It is found that pressurized motoring yields comparable but generally a bit higher friction power losses as in fired operation. In particular, for full load operation, the agreement between the two methods is very good which supports the reasoning that for full load operation the mechanical load is the dominant factor for the friction power losses. However, for part load operation significant differences arise. Without the thermal influence from combustion, increasing the load on the engine leads to a rather linear increase in the friction power losses as is seen from pressurized motoring. This is in contrast to the fired engine tests, where the friction power losses stay almost constant over a rather large range of part loads and only increase for full load operation. It is argued that the reason for this different behaviour is the thermal impact from combustion.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3