Advanced turbulence and combustion modeling for the study of a swirl-assisted natural gas spark-ignition heavy-duty engine

Author:

Riccardi Marco12ORCID,De Bellis Vincenzo2,Sforza Lorenzo3,Beatrice Carlo1,Bozza Fabio2,Mirzaeian Mohsen4

Affiliation:

1. CNR – STEMS, Naples, Italy

2. University of Naples “Federico II”, Naples, Italy

3. Polytechnic of Milano, Milan, Italy

4. FPT Industrial S.p.A., Turin, Italy

Abstract

Increasing demands on higher performance and lower fuel consumption and emissions have led the path for internal combustion engine development; this race is nowadays directly related to CO2 emissions reduction. To drive engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and calibration. The present work is focused on the improvement of the phenomenological turbulence model, originally conceived to describe turbulence evolution in tumble-promoting engines. The turbulence model is developed with reference to a SI heavy-duty CNG engine derived from a diesel engine. In this architecture, due to the flat cylinder head, turbulence is also generated by swirl and squish flow motions, in addition to tumble motion. The presented turbulence model is validated against 3D CFD results, demonstrating to properly predict turbulence and swirl/tumble evolution under two different operating conditions, without the need for any case-dependent tuning. The developed turbulence model is coupled to a phenomenological combustion model based on the fractal geometry theory applied to the flame front surface, where the turbulence is assumed to support flame propagation through an enhancement of the flame front area with respect to the laminar counterpart. The combustion model is validated against an extensive experimental dataset, composed of 25 operating points at different engine rotational speeds and loads. The numerical/experimental comparisons of global performance parameters are satisfactory, leading to maximum errors around ±2% for the BSFC, ±2° for the main combustion events, and ±1 bar for the in-cylinder peak pressure. Burn rate profiles are very well captured by the combustion model at changing operating conditions, not requiring any case-dependent tuning. The presented results demonstrate that the turbulence/combustion models could constitute a reliable virtual test facility, contributing to supporting and driving experimental activities.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Reference45 articles.

1. Annual European Union greenhouse gas inventory 1990–2020 and inventory report 2022, https://www.eea.europa.eu//publications/annual-european-union-greenhouse-gas-1. Accessed November 12, 2022.

2. IARC: diesel engine exhaust carcinogenic. International Agency for Research on Cancer, Press Release No. 213, 12th June, 2012.

3. Well-to-wheel analysis of bio-methane via gasification, in heavy duty engines within the transport sector of the European Union

4. Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3