Laminar-to-turbulent flame transition and cycle-to-cycle variations in large eddy simulation of spark-ignition engines

Author:

Su Yunde1ORCID,Splitter Derek2ORCID,Kim Seung Hyun1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA

2. Oak Ridge National Laboratory, Knoxville, TN, USA

Abstract

This paper investigates the effect of laminar-to-turbulent flame transition modeling on the prediction of cycle-to-cycle variations (CCVs) in large eddy simulation (LES) of spark-ignition (SI) engines. A laminar-to-turbulent flame transition model that describes the non-equilibrium sub-filter flame speed evolution during an early stage of flame kernel growth is developed. In the present model, the flame transition is characterized by the flame kernel size at which the flame transition ends, defined here as the flame transition scale. The proposed model captures the effects that variations in a turbulent flow field have on the evolution of early-stage burning rates, through variations in the flame transition scale. The proposed flame transition model is combined with the front propagation formulation (FPF) method and a spark-ignition model to predict CCVs in a gasoline direct injection SI engine. It is found that multi-cycle LES with the proposed flame transition model reproduces experimentally-observed CCVs satisfactorily. When the transition model is not considered or when variations in the transition process are neglected, CCVs are significantly under-predicted for the case considered here. These results indicate the importance of modeling the laminar-to-turbulent flame transition and the effect of turbulence on the transition process, when predicting CCVs, under certain engine conditions. The LES results are also used to analyze sources for variations in the flame transition. It is found, for the present engine case, that the most important source is the cycle-to-cycle variation in the turbulence dissipation rate, which is used to measure the strength of turbulence in the proposed model, near a spark plug. The large-scale velocity field and the variations of the laminar flame speed due to the mixture composition and thermal stratification are also found to be important factors to contribute to the variations in the flame transition.

Funder

office of energy efficiency and renewable energy

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3