Three-dimensional mixed EHL analysis of marine cam-tappet with machined surface roughness

Author:

Hua Deliang1ORCID,Shi Xiujiang1,Sun Wen1ORCID,Lu Xiqun1,Neville Anne12

Affiliation:

1. College of Power and Energy Engineering, Harbin Engineering University, Harbin, China

2. Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, Leeds, UK

Abstract

Due to the effects of transient load, curvature, speed and surface micro-topography, the marine cam-tappet pair usually works in harsh mixed lubrication state. In this paper, considering the effect of surface roughness, based on the three-dimensional (3D) line-contact mixed EHL model, the transient lubrication state of cam-tappet pair is analyzed. Results show the presence of three-dimensional surface roughness will affect fluctuations in film thickness and pressure clearly, while excessive roughness also cause local stress concentration, the asperity contact and zero film thickness. The lubrication effects of different machined surface methods are compared, and it found that the smallest film thickness ratio occurs as the ground surfaces contact, and lubrication state is very harsh, however, the polished surface can significantly improve lubrication state of the cam-tappet pair. Under low-speed conditions, the contact area ratio is greatly increased, which may cause serious stress concentration and excessive wear. By optimizing the base circle radius, the load-bearing capacity of cam-tapper pair improves clearly and the lubrication state is improved.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3