A comprehensive investigation on the internal flow and outflow characteristics of GDI elliptical divergent nozzles

Author:

Yu Shenghao1ORCID,Yin Bifeng2,Chen Chen2,Jia Hekun2,Wang Weifeng3

Affiliation:

1. School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, China

2. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, China

3. Changchai Company, Limited, Changzhou, China

Abstract

The substantial demand for enhanced combustion efficiency and achieving near-zero emissions in GDI engines has spurred the introduction of a novel approach employing elliptical divergent nozzle spray technology. This innovative method, which marries the elliptical shape with a divergent nozzle, not only elevates downstream atomization quality but also mitigates nozzle tip wetting. Nevertheless, there exists a dearth of documented research regarding the internal flow and outflow characteristics related to the atomization potential of elliptical divergent nozzles. Numerical investigations have been carried out to scrutinize alterations in the three-dimensional cavitation morphology, the dispersion of turbulent vortex structures, and the nozzle exit flow parameters across a range of cavitation number conditions for both circular and elliptical divergent nozzles. The research findings demonstrate that the cavitation intensity of the elliptical divergent nozzle consistently surpasses that of the circular divergent nozzle. Also, the elliptical divergent nozzle consistently exhibits a greater number of turbulent vortex structures compared to the circular divergent nozzle across all cavitation number conditions. Additionally, as the cavitation number decreases, the difference in turbulence vorticity magnitude between the exits of the circular and elliptical divergent nozzles gradually increases. Furthermore, the elliptical diverging orifices are more susceptible to cavitation compared to their circular counterparts. The elliptical divergent nozzle outperforms the circular nozzle with a substantial 24.6% increase in exit velocity, especially at a cavitation number of 1.016.

Funder

Jiangsu Provincial Natural Science Foundation for Higher Education

natural science foundation of jiangsu province

national natural science foundation of china

Science and Technology on Scramjet Laboratory Project of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3