Effects of direct water injection and injector configurations on performance and emission characteristics of a gasoline direct injection engine: A computational fluid dynamics analysis

Author:

Raut Ankit A1ORCID,Mallikarjuna J M1

Affiliation:

1. Internal Combustion Engines Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, India

Abstract

In-cylinder water injection is a promising approach for reducing NOx and soot emissions from internal combustion engines. It allows one to use a higher compression ratio by reducing engine knock; hence, higher fuel economy and power output can be achieved. However, water injection can also affect engine combustion and emission characteristics if water injection and injector parameters are not properly set. Majority of the previous studies on the water injection are done through experiments. Therefore, subtle aspects of water injection such as in-cylinder interaction of water sprays, spatial distribution of water vapor, and effect on flame propagation are not clearly understood and rarely reported in literature due to experimental limitations. Thus, in the present article, a computational fluid dynamics investigation is carried out to analyze the effects of direct water injection under various injector configurations on water evaporation, combustion, performance, and emission characteristics of a gasoline direct injection engine. The emphasis is given to analyze in-cylinder water spray interactions, flame propagation, water spray droplet size distribution, and water vapor spatial distribution inside the engine cylinder. For the study, the water-to-fuel ratio is varied from 0 to 1. Various water injector configurations using nozzle hole diameters of 0.14, 0.179, and 0.205 mm, along with nozzle holes of 4, 5, 6, and 7, are considered for comparison in addition to the case of no_water. Computational fluid dynamics models used in this study are validated with the available data in literature. From the results, it is found that the emission and performance characteristics of the engine are highly dependent on water evaporation characteristics. Also, the water-to-fuel ratio of 0.6 with 6 number of nozzle holes and the nozzle diameter of 0.14 mm results in the highest indicated mean effective pressure and the lowest NOx, soot, and CO emissions compared to other cases considered.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3