Assessment of air management strategies on particulate number and size distributions from a 2-stroke compression-ignition engine operating with gasoline Partially Premixed Combustion concept

Author:

Bermúdez Vicente1,Ruiz Santiago1,Novella Ricardo1,Soto Lian1ORCID

Affiliation:

1. CMT-Motores Térmicos, Universitat Politècnica de València, València, Spain

Abstract

The newly designed partially premixed combustion concept has demonstrated its potential to reduce nitrogen oxides and particulate matter emissions combined with highly indicated efficiencies. However, it is highly dependent of the ignition characteristics of the fuel and the air/fuel mixture preparation. Therefore, the proper selection of an injection strategy, of the combustion chamber design and of the air management strategy are critical to ensuring successful partially premixed combustion operation in the full engine map. The objective of the present investigation is to evaluate the use of multiple air management strategies over the air/fuel effective equivalence ratio ( ϕeff) and cylinder charge reactivity and its consequent impact on particle number emissions and particle size distribution. Tests were carried out in a newly designed 2-stroke high-speed direct-injection compression-ignition engine operating with partially premixed combustion concept using 95-research-octane-number gasoline fuel. A scanning mobility particle sizer was used to measure the size distribution of engine-exhaust particles in the range from 6.3 to 237 nm. Three different steady-state operation modes in terms of indicated mean effective pressure and engine speed were investigated. The experiments showed an increase in the particle number emissions and a progressive shift in the particle size toward larger sizes, increasing the accumulation-mode particles and reducing the nucleation-mode particles with the decrease in the differential pressure between intake and exhaust (Δ P) and the valve overlap period. Finally, the particle formation process was limited by the increase in the exhaust gas recirculation rate.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3