RDE cycle simulation by 0D/1D models to investigate IC engine performance and cylinder-out emissions

Author:

Marinoni Andrea Massimo1ORCID,Onorati Angelo1,Montenegro Gianluca1,Sforza Lorenzo1,Cerri Tarcisio1,Olmeda Pablo2ORCID,Dreif Amin2

Affiliation:

1. Department of Energy, Politecnico di Milano, Milan, Italy

2. CMT-Motores Térmicos, Universitat Politècnica de València, València, Spain

Abstract

In this work, the development and application of advanced predictive 0D/1D methodologies to simulate Real Driving Emission (RDE) cycles are described. Firstly, the 1D simulation model is validated on a map of steady state operating points, which allows to use successively the very same model, with its calibration, during an RDE cycle simulation, considering the sequence of varying loads, and rotational speeds. In particular, the validated 1D model is used to simulate a typical RDE transient cycle of approximately 1 h and 45 min. The test case investigated is a modern plug-in hybrid passenger car engine, in which the thermal power unit consists of a 1 L three-cylinder, turbocharged gasoline engine. The experimental and simulated RDE cycle is characterized by a sensibly varying Internal Combustion Engine (ICE) operation, allowing to evaluate engine performance and cylinder out emissions. To speed up the calculation and significantly lower the Central Processing Unit (CPU)/real time ratio a dedicated numerical solver for fast simulation has been implemented and tested, while keeping the fidelity of the results. A predictive 0D, multi-zone model for Spark Ignition (SI) combustion has been applied, together with emission sub-models for the calculation of the main pollutants. Both instantaneous and cumulative emissions have been evaluated. The results of the simulations have been compared to the experimental data of RDE cycles, showing a good predictiveness of the models and the high potential of 0D/1D simulation codes as design tools, in the new scenario of demanding testing procedures. This approach can be applied for any engine configuration operating under any transient condition.

Funder

Horizon 2020 Framework Programme

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3