Development of a semi-empirical physical model for transient NOx emissions prediction from a high-speed diesel engine

Author:

Bajwa Abdullah1,Zou Gongyi1,Zhong Fengyu1ORCID,Fang Xiaohang12ORCID,Leach Felix1ORCID,Davy Martin1ORCID

Affiliation:

1. Department of Engineering Science, University of Oxford, Oxford, UK

2. Department of Mechanical & Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada

Abstract

With emissions regulations becoming increasingly restrictive and the advent of real driving emissions limits, control of engine-out NOx emissions remains an important research topic for diesel engines. Progress in experimental engine development and computational modelling has led to the generation of a large amount of high-fidelity emissions and in-cylinder data, making it attractive to use data-driven emissions prediction and control models. While pure data-driven methods have shown robustness in NOx prediction during steady-state engine operation, deficiencies are found under transient operation and at engine conditions far outside the training range. Therefore, physics-based, mean value models that capture cyclic-level changes in in-cylinder thermo-chemical properties appear as an attractive option for transient NOx emissions modelling. Previous experimental studies have highlighted the existence of a very strong correlation between peak cylinder pressure and cyclic NOx emissions. In this study, a cyclic peak pressure-based semi-empirical NOx prediction model is developed. The model is calibrated using high-speed NO and NO2 emissions measurements during transient engine operation and then tested under different transient operating conditions. The transient performance of the physical model is compared to that of a previously developed data-driven (artificial neural network) model, and is found to be superior, with a better dynamic response and low (<10%) errors. The results shown in this study are encouraging for the use of such models as virtual sensors for real-time emissions monitoring and as complimentary models for future physics-guided neural network development.

Funder

Engineering and Physical Sciences Research Council

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3