Simulated arbitration of discordance between radiologists and artificial intelligence interpretation of breast cancer screening mammograms

Author:

Marinovich M Luke12ORCID,Lotter William34ORCID,Waddell Andrew5,Houssami Nehmat12ORCID

Affiliation:

1. The Daffodil Centre, The University of Sydney, A Joint Venture With Cancer Council NSW, Sydney, NSW, Australia

2. Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia

3. Dana-Farber Cancer Institute, Boston, MA, USA

4. Harvard Medical School, Boston, MA, USA

5. BreastScreen WA, Perth, WA, Australia

Abstract

Artificial intelligence (AI) algorithms have been retrospectively evaluated as replacement for one radiologist in screening mammography double-reading; however, methods for resolving discordance between radiologists and AI in the absence of ‘real-world’ arbitration may underestimate cancer detection rate (CDR) and recall. In 108,970 consecutive screens from a population screening program (BreastScreen WA, Western Australia), 20,120 were radiologist/AI discordant without real-world arbitration. Recall probabilities were randomly assigned for these screens in 1000 simulations. Recall thresholds for screen-detected and interval cancers (sensitivity) and no cancer (false-positive proportion, FPP) were varied to calculate mean CDR and recall rate for the entire cohort. Assuming 100% sensitivity, the maximum CDR was 7.30 per 1000 screens. To achieve >95% probability that the mean CDR exceeded the screening program CDR (6.97 per 1000), interval cancer sensitivities ≥63% (at 100% screen-detected sensitivity) and ≥91% (at 80% screen-detected sensitivity) were required. Mean recall rate was relatively constant across sensitivity assumptions, but varied by FPP. FPP > 6.5% resulted in recall rates that exceeded the program estimate (3.38%). CDR improvements depend on a majority of interval cancers being detected in radiologist/AI discordant screens. Such improvements are likely to increase recall, requiring careful monitoring where AI is deployed for screen-reading.

Funder

National Breast Cancer Foundation

National Health and Medical Research Council

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3