Identification of the Ingredients and Mechanisms of Curcumae Radix for Depression Based on Network Pharmacology and Molecular Docking

Author:

Wang Xiaotong1,Lin Qiaoru2,Shen Meiqing2,Lin Haixiong34,Feng Junjie3,Peng Lulu5,Huang Minling3,Zhan Xiaoxuan1,Chen Ziyin3,Ma Tengfei6

Affiliation:

1. Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China

2. The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China

3. The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China

4. The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China

5. Wuyi Traditional Chinese Medicine Hospital of Jiangmen, Jiangmen, People’s Republic of China

6. Shenzhen Bao’an Traditional Chinese Medicine Hospital Group, Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China

Abstract

Background Curcumae Radix (CR), derived from the dry roots of Curcuma longa L., family Zingiberaceae, is widely used to treat depression. However, the ingredients and mechanisms of CR are still unclear. The purpose of this study was to solve this problem using network pharmacology and molecular docking. Methods The active ingredients of CR were screened through TCMSP, and the depression-related genes were obtained through the Genetic Association, GeneCards, and OMIM databases. Then, DisGeNET score was performed to evaluate the correlation between co-genes and depression. Topological analysis was conducted to screen hub genes and proteins, molecular docking was performed to evaluate the binding ability of the hub protein with active ingredients, and gene ontology (Go) function analysis, gene tissue localization, and KEGG pathway analysis were conducted to explore the function and location of genes, as well as the mechanism of CR for treating depression. Results Eight ingredients of CR were screened based on pharmacokinetic properties, five of which are closely related to depression, including (E)−5-hydroxy-7-(4-hydroxyphenyl)−1-phenyl-1-heptene, (E)−1,7-diphenyl-3-hydroxy-1-hepten-5-one, oxycurcumenol, β-sitosterol, and sitosterol. They interacted with 45 co-genes and co-proteins with a DisGeNET score ≥0.3. AR, NOS2, PTGS2, and TYK2 were pivot genes. EGFR, PTGS2, HSP90AA1, MAPK8, and ESR1 were hub proteins. PTGS2 was found to have good binding potential with oxycurcumenol, (E)−1,7-diphenyl-3-hydroxy-1-hepten-5-one and (E)−5-hydroxy-7-(4-hydroxyphenyl)−1-phenyl-1-heptene. Go functional analysis indicated that co-genes involved complex biological processes, cellular components and molecular functions. PER2, P2RX7, GRM1, TACR1, MAPK8, HCRTR1, EGFR, and TYK2 were highly expressed in the prefrontal cortex. The potential pathways for CR to exert antidepressant effects were calcium, estrogen, PI3K-Akt and ErbB signaling pathways. Conclusions This study revealed the ingredients, effective targets and mechanisms of CR in the treatment of depression, which provides a new perspective for the development of new antidepressants.

Funder

guangzhou university of chinese medicine

International Program for Postgraduates, Guangzhou University of Chinese Medicine

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3