A Mathematical Model of Homeostatic Regulation of Sleep-Wake Cycles by Hypocretin/Orexin

Author:

Postnova Svetlana1,Voigt Karlheinz2,Braun Hans Albert2

Affiliation:

1. Institute of Physiology, Philipps University of Marburg, Marburg, Germany,

2. Institute of Physiology, Philipps University of Marburg, Marburg, Germany

Abstract

We introduce a physiology-based mathematical model of sleep-wake cycles, suggesting a novel mechanism of homeostatic regulation of sleep. In this model, the homeostatic process is determined by the neuropeptide hypocretin/ orexin, which is a cotransmitter of the lateral hypothalamus. Hypocretin/ orexin neurons are silent during sleep and active during wakefulness. Firing of these neurons is sustained by reciprocal excitatory synaptic connections with local glutamate interneurons. This feedback loop has been simulated with a minimal but physiologically plausible model. It includes 2 simplified Hodgkin-Huxley type neurons that are connected via glutamate synapses, one of which additionally contains hypocretin/orexin as the functionally relevant cotransmitter. During the active state (wakefulness), the synaptic efficacy of hypocretin/orexin declines as a result of the ongoing firing. It recovers during the silent (sleep) state. We demonstrate that these homeostatic changes can account for typical alterations of sleep-wake transitions, for example, introduced by napping, sleep deprivation, or alarm clock. In combination with a circadian input, the model mimics the transitions between silent and firing states in agreement with sleep-wake cycles. These simulation results support the concept of state-dependent alterations of hypocretin/orexin effects as an important homeostatic process in sleep-wake regulation, although additional mechanisms can be involved.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3