miR-100 alleviates the inflammatory damage and apoptosis of H2O2-induced human umbilical vein endothelial cells via inactivation of Notch signaling by targeting MMP9

Author:

Wang Chen1,Zhang Yanqin2,Jiang Zhenxing3,Bai Huiling1,Du Zizhong1ORCID

Affiliation:

1. Department of Peripheral Vascular Intervention, Gansu Provincial Hospital of TCM, Lanzhou, China

2. Department of Rehabilitation Medicine, Gansu Provincial Hospital of TCM, Lanzhou, China

3. Department of Repair & Reconstruction Orthopaedics, Gansu Provincial Hospital of TCM, Lanzhou, China

Abstract

Objective Thromboangiitis obliterans is a nonatherosclerotic segmental inflammatory disease, and miR-100 plays an anti-inflammatory role in chronic inflammation. Therefore, we hypothesized that miR-100 might alleviate the inflammatory damage and apoptosis of H2O2-induced ECV304 cells and aimed to investigate the relationship between miR-100 and thromboangiitis obliterans and the related molecular mechanism. Methods Cell counting kit-8 was used to detect cell viability, and the expression of inflammatory factors and oxidative stress was measured by ELISA. TUNEL assay was used to detect the apoptosis of human umbilical vein endothelial cells after induction by H2O2. Furthermore, the interaction between miR-100 and matrix metalloproteinase-9 was verified by dual-luciferase assay. Quantitative reverse transcription polymerase chain reaction and western blot were used to detect the expression of the adhesion factors, apoptosis-related proteins and Notch pathway-related protein. Results The results revealed that miR-100 was decreased in H2O2-induced human umbilical vein endothelial cells. Overexpression of miR-100 attenuated inflammatory response and cell apoptosis in H2O2-induced human umbilical vein endothelial cells. The overexpression of miR-100 inhibited matrix metalloproteinase-9 expression in H2O2-induced human umbilical vein endothelial cells. miR-100 inhibited H2O2-induced human umbilical vein endothelial cell inflammation, oxidative stress, and cell apoptosis via inactivation of Notch signaling by targeting matrix metalloproteinase. Conclusions Our study demonstrated that miR-100 reduced the inflammatory damage and apoptosis of H2O2-induced human umbilical vein endothelial cells via inactivation of Notch signaling by targeting matrix metalloproteinase. These findings suggested that miR-100 might be a novel therapeutic target for the prevention of thromboangiitis obliterans.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3