Unsupervised machine learning cluster analysis to identification EVAR patients clinical phenotypes based on radiomics

Author:

Wang Yonggang1ORCID,Zhou Min2,Ding Yong2,Li Xu2,Xie Tianchen2,Zhou Zhenyu2,Fu Weiguo2,Shi Zhenyu2

Affiliation:

1. Department of Vascular Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China

2. Department of Vascular Surgery, Zhongshan Hospital, Institute of Vascular Surgery, Fudan University, National Clinical Research Center for Interventional Medicine, Shanghai, China

Abstract

Objective This study used unsupervised machine learning (UML) cluster analysis to explore clinical phenotypes of endovascular aortic repair (EVAR) for abdominal aortic aneurysm (AAA) patients based on radiomics. Method We retrospectively reviewed 1785 patients with infra-renal AAA who underwent elective EVAR procedures between January 2010 and December 2020. Pyradiomics was used to extract the radiomics features. Statistical analysis was applied to determine the radiomics features that related to severe adverse events (SAEs) after EVAR. The selected features were used for UML cluster analysis in training set and validation in test set. Comparison of basic characteristics and radiomics features of different clusters. The Kaplan-Meier analysis was conducted to generate the cumulative incidence of freedom from SAEs rate. Result A total of 1180 patients were enrolled. During the follow-up, 353 patients experienced EVAR-related SAEs. In total, 1223 radiomics features were extracted from each patient, of which 23 radiomics features were finally preserved to identify different clinical phenotypes. 944 patients were allocated to the training set. Three clusters were identified in training set, in which patients had identical clinical characteristics and morphological features, while varied considerably of selected radiomics features. This encouraging performance was further approved in the test set. In addition, each cluster was well differentiated from other clusters and Kaplan-Meier analysis showed significant differences of freedom from SAEs rate between different clusters both in the training ( p = .0216) and test sets ( p = .0253). Conclusion Based on radiomics, UML cluster analysis can identify clinical phenotypes in EVAR patients with distinct long-term outcomes.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3