Predicting mortality amongst Jordanian men with heart attacks using the chi-square automatic interaction detection model

Author:

Bani Hani Salam1ORCID,Ahmad Muayyad2

Affiliation:

1. School of Nursing, Nursing Department, Irbid National University, Irbid, Jordan

2. School of Nursing, Clinical Nursing Department, University of Jordan, Ammanm, Jordan

Abstract

Background: One of the most complicated cardiovascular diseases in the world is heart attack. Since men are the most likely to develop cardiac diseases, accurate prediction of these conditions can help save lives in this population. This study proposed the Chi-Squared Automated Interactive Detection (CHAID) model as a prediction algorithm to forecast death versus life among men who might experience heart attacks. Methods: Data were extracted from the electronic health solution system in Jordan using a retrospective, predictive study. Between 2015 and 2021, information on men admitted to public hospitals in Jordan was gathered. Results: The CHAID algorithm had a higher accuracy of 93.72% and an area under the curve of 0.792, making it the best top model created to predict mortality among Jordanian men. It was discovered that among Jordanian men, governorates, age, pulse oximetry, medical diagnosis, pulse pressure, heart rate, systolic blood pressure, and pulse pressure were the most significant predicted risk factors of mortality from heart attack. Conclusion: With heart attack complaints as the primary risk factors that were predicted using machine learning algorithms like the CHAID model, demographic characteristics and hemodynamic readings were presented.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3