Predicting metabolic syndrome using machine learning – Analysis of commonly used indices

Author:

Avizohar Elad1ORCID,Shehory Onn1

Affiliation:

1. School of Business Administration, Bar-Ilan University, Ramat Gan, Israel

Abstract

Determining the factors that contribute to making a reliable prediction of the metabolic syndrome will provide a deeper understanding of the medical indices involved in the prediction and assist in early diagnosis and treatment of patients. The study examined the optimal number of National cholesterol education program adult treatment panel (NCEP ATP) III indices needed to make a reliable prediction of the syndrome, whether each of the five NCEP ATP III indices for predicting the syndrome is equally important and whether a reliable prediction can be made using calculated blood pressure indices – estimated mean arterial pressure and pulse pressure – instead of NCEP ATP III blood pressure indices. The results show that NCEP ATP III indices for determination of the syndrome are not equally important. Moreover, the indices importance and their prediction quality vary according to gender. Optimal results are obtained by using all five NCEP ATP III indices for prediction.

Publisher

SAGE Publications

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3