Understanding Reliance Decisions in Automated Vehicles Using Random Forest Analysis

Author:

Ma Xingjian1ORCID,Xiao Xizi1,Mehta Ranjana1,McDonald Anthony D.1ORCID

Affiliation:

1. University of Wisconsin-Madison, WI, USA

Abstract

Driver reliance on automated vehicles (AV) is a critical component of safety particularly during high-risk traffic scenarios. Factors that influence reliance, including trust, situation awareness, fatigue, and demographics, have been independently explored; however, few analyses have investigated predicting AV reliance and compared factors comprehensively. The goals of this study were to develop a random forest (RF) model to predict reliance and to analyze the importance of factors for reliance decisions. We leveraged data from a driving simulation study where participants encountered four traffic events including responding to an illegal vehicle crossing, managing construction zones, stopping at a vandalized stop sign, and a pedestrian detection task. The dataset included reliance decisions and subjective assessments of dispositional trust, situational trust, fatigue, and workload. An RF model fit to the dataset using cross validation achieved an average AUC of 0.81 and accuracy of 0.77 and situational trust emerged as the most influential predictor.

Funder

National Science Foundation

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3