Investigating 24- to 48-hr Forecast of Offshore Worker Alertness and Vigilance Using Multimodal Sources: A Proactive Fatigue Monitoring Paradigm

Author:

Nartey David1ORCID,Kang John1,Sasangohar Farzan1,Mehta Ranjana K.2

Affiliation:

1. Texas A&M University, College Station, TX, USA

2. University of Wisconsin-Madison, WI, USA

Abstract

Fatigue is a significant contributor to accidents in the high-risk oil and gas industry. This study developed and evaluated models for forecasting fatigue manifestation in offshore workers using the Psychomotor Vigilance Task (PVT). Seventy offshore workers participated in a four-week study, providing data on sleep, physiological, subjective, and performance measures. Various machine learning models (Ridge, Random Forest, Support Vector, Long Short-Term Memory (LSTM) regressions) were employed to predict PVT reaction times using different data normalization between generalized and personalized datasets. Results indicate that personalized Support Vector Regression models outperform other models in predicting short-term fatigue. Age and perceived exertion emerged as crucial predictors of fatigue. The findings underscore the potential of personalized fatigue forecasting for enhancing safety in the oil and gas industry.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3