Numerical modelling of ventilation strategies for mitigating cough particles transmission and infection risk in hospital isolation rooms

Author:

Korany Hussein Zein12ORCID,Almhafdy Abdulbasit3ORCID,AlSaleem Saleem S4ORCID,Cao Shi-Jie5ORCID

Affiliation:

1. Department of Mechanical Engineering, College of Engineering, Qassim University, Buraydah, Saudi Arabia

2. Mechanical Design and Production Department, Faculty of Engineering, Cairo University, Giza, Egypt

3. Department of Architecture, College of Architecture and Planning, Qassim University, Buraydah, Saudi Arabia

4. Department of Civil Engineering, College of Engineering, Qassim University, Buraydah, Saudi Arabia

5. School of Architecture, Southeast University, Nanjing, China

Abstract

This study used numerical modelling to analyze air velocity, cough particle distribution and infection risks in an isolation room. It investigated air change rates, inlet/outlet vent positioning and assessed various ventilation rates and outlet configurations for reducing infection risks. Quantitative assessments revealed different particle escape timings. In Case 1, smaller particles (2–4  μm) took 8.2 s to escape, while in Case 2, this time extended to 22.7 s. At 48 ACH, there were significant improvements in removing particles of various sizes, particularly those sized 2–4  μm, 16–24  μm and 40–50  μm, reducing the infection risk. The use of the Wells-Riley model highlighted considerable reductions in infection probabilities with higher ACH. Specifically, infection risks were reduced to 5% in Case 1 and 17% in Case 2, underscoring the marked advantage of Case 1 in reducing infection probabilities, particularly for smaller particles. Furthermore, escalated ACH values consistently correlated with decreased infection probabilities across all particle sizes, highlighting the pivotal role of ventilation rates in mitigating infection risks. The study comprehensively investigated the distribution of air velocity, dynamics of cough particles and infection risk associated with different ventilation strategies in isolation rooms.

Funder

Qassim University

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3