Integrative analyses reveal RNA regulatory network in Ti particles induced inflammation

Author:

Jiang Yonghui1,Ma Huanzhi2,Zhang Qin2,Shi Jun2,Gao Yutong2,Sun Chengliang2,Zhang Wei2ORCID

Affiliation:

1. Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China

2. Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China

Abstract

Introduction Wear particles induced inflammatory osteolysis is the most important initiating factors in the mechanism of aseptic loosening. However, the molecular network changes in this process remain largely elusive. Methods Here, we performed whole transcriptome analysis using Ti particles induced RAW264.7 cell model to identify specific genes and pathways. Results Sequencing results totally identified 159 mRNAs, 96 lncRNAs, 31 circRNAs, and 12 miRNAs were significantly differently expressed. Of these, we selected two of each RNA for qRT-PCR validation and the results were highly consistent with the RNA-seq data. GSEA analysis shows that upregulated gene sets were related to the three classical inflammation pathway, cytokine–cytokine receptor interaction, TNF, and NF-kappa B signaling pathway. The enriched genes included not only IL-1β and TNF- α, which were independently verified before sequencing, but also other inflammatory osteolysis-related genes such as Mmp9, Fas, and Ccl2. Co-differentially expressed RNAs were employed to construct the ceRNA co-regulatory network. Conclusion: The results revealed that 4 lncRNAs and 2 circRNAs formed a regulatory network to simultaneously regulate miR-3065-3p targeting Myo18a. The present study helps to comprehensively understand the molecular mechanisms and regulatory interaction networks during early inflammatory response.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3