Rotator Cuff Repair With Autologous Tenocytes and Biodegradable Collagen Scaffold: A Histological and Biomechanical Study in Sheep

Author:

Roßbach Björn P.12,Gülecyüz Mehmet F.1,Kempfert Lena13,Pietschmann Matthias F.1,Ullamann Tina1,Ficklscherer Andreas14,Niethammer Thomas R.1,Zhang Anja15,Klar Roland M.1,Müller Peter E.1

Affiliation:

1. Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich, Klinikum Großhadern, Munich, Germany

2. Department of Orthopaedics, Section for Arthroscopy, Joint Surgery and Sports Traumatology, Asklepios Klinik St Georg, Academic Hospital of the University of Hamburg, Hamburg, Germany

3. Department of Urology and Pediatric Urology, RoMed Klinikum, Rosenheim, Germany

4. Orthopädie am Viktualienmarkt, Munich, Germany

5. Institute for Physical Medicine and Rehabilitation, Klinikum Ingolstadt, Germany

Abstract

Background: Large rotator cuff tears still represent a challenging problem in orthopaedics. The use of tenocytes on biomaterials/scaffolds for the repair of large rotator cuff defects might be a promising approach in the field of tendon regeneration. Hypothesis: Cultivated autologous tenocytes seeded on a collagen scaffold lead to enhanced histological and biomechanical results after rotator cuff repair in a sheep model as compared with unseeded scaffolds in an acute setting. Study Design: Controlled laboratory study. Methods: At the tendon-bone junction of the infraspinatus tendon of the right foreleg of 24 sheep, a 3.5 × 1.5–cm tendon defect was created. Sheep were randomly allocated to group 1, a defect; group 2, where an unseeded collagen scaffold was implanted; or group 3, which received the implantation of a collagen scaffold seeded with autologous tenocytes. Twelve weeks postoperatively, tendon regeneration was examined histologically and biomechanically. Results: The histology of the neotendons of group 3 showed better fiber patterns, a higher production of proteoglycans, and an increased genesis of collagen III in contrast to groups 1 and 2. Immunostaining revealed less tissue dedifferentiation, a more structured cartilage layer, and homogeneous cartilage-bone transition in group 3 in comparison with groups 1 and 2. Biomechanically, the tensile strength of the reconstructed tendons in group 3 (mean load to failure, 2516 N; SD, 407.5 N) was approximately 84% that of the native tendons (mean load to failure, 2995 N; SD, 223.1 N) without statistical significance. A significant difference ( P = .0095) was registered between group 1 (66.9% with a mean load to failure of 2004 N; SD, 273.8 N) and the native tendons, as well as between group 2 (69.7% with a mean load to failure of 2088 N; SD, 675.4 N) and the native tendons for mean ultimate tensile strength. In breaking stress, a significant difference ( P = .0095) was seen between group 1 (mean breaking stress, 1335 N/mm2; SD, 182.7 N/mm2) and the native tendons, as well as between group 2 (breaking stress, 1392 N/mm2; SD, 450.2 N/mm2) and the native tendons (mean breaking stress, 1996 N/mm2; SD, 148.7 N/mm2). Again, there was no significant difference between group 3 (mean breaking stress, 1677 N/mm2; SD, 271.7 N/mm2) and the native tendons. Conclusion: Autologous tenocytes seeded on collagen scaffolds yield enhanced biomechanical results after tendon-bone reconstruction as compared with unseeded scaffolds in an acute setting. Biomechanical results and histological outcomes were promising, showing that the use of autologous tenocytes with specific carrier matrices could be a novel approach for repairing rotator cuff tears. Clinical Relevance: This study supports the use of tenocytes and scaffolds for improving the quality of tendon-bone regeneration.

Funder

b. braun melsungen

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3