Meniscal Fibrocartilage Repair Based on Developmental Characteristics: A Proof-of-Concept Study

Author:

Yan Wenqiang123,Zhu Jingxian123,Wu Yue123,Wang Yiqun123,Du Cancan123,Cheng Jin123,Hu Xiaoqing123,Ao Yingfang123ORCID

Affiliation:

1. Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China

2. Beijing Key Laboratory of Sports Injuries, Beijing, China

3. Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China

Abstract

Background: Unlike the adult meniscus, the fetal meniscus possesses robust healing capacity. The dense and stiff matrix of the adult meniscus provides a biophysical barrier for cell migration, which is not present in the fetal meniscus. Inspired by developmental characteristics, modifying the matrix of the adult meniscus into a fetal-like, loose and soft microenvironment holds opportunity to facilitate repair, especially in the avascular zone. Hypothesis: Modifying the dense and stiff matrix of the adult meniscus into a fetal-like, loose and soft microenvironment could enhance cell migration to the tear interface and subsequent robust healing capacity. Study Design: Controlled laboratory study. Methods: Fresh porcine menisci were treated with hyaluronidase or collagenase. The density and arrangement of collagen fibers were assessed. The degradation of proteoglycans and collagen was evaluated histologically. Cell migration within the meniscus or the infiltration of exogenous cells into the meniscus was examined. Dendritic silica nanoparticles with relatively large pores were used to encapsulate hyaluronidase for rapid release. Mesoporous silica nanoparticles with relatively small pores were used to encapsulate transforming growth factor–beta 3 (TGF-β3) for slow release. A total of 24 mature male rabbits were included. A longitudinal vertical tear (0.5 cm in length) was prepared in the avascular zone of the medial meniscus. The tear was repaired with suture, repaired with suture in addition to blank silica nanoparticles, or repaired with suture in addition to silica nanoparticles releasing hyaluronidase and TGF-β3. Animals were sacrificed at 12 months postoperatively. Meniscal repair was evaluated macroscopically and histologically. Results: The gaps between collagen bundles increased after hyaluronidase treatment, while collagenase treatment resulted in collagen disruption. Proteoglycans degraded after hyaluronidase treatment in a dose-dependent manner, but collagen integrity was maintained. Hyaluronidase treatment enhanced the migration and infiltration of cells within meniscal tissue. Last, the application of fibrin gel and the delivery system of silica nanoparticles encapsulating hyaluronidase and TGF-β3 enhanced meniscal repair responses in an orthotopic longitudinal vertical tear model. Conclusion: The gradient release of hyaluronidase and TGF-β3 removed biophysical barriers for cell migration, creating a fetal-like, loose and soft microenvironment, and enhanced the fibrochondrogenic phenotype of reparative cells, facilitating the synthesis of matrix and tissue integration. Clinical Relevance: Modifying the adult matrix into a fetal-like, loose and soft microenvironment via the local gradient release of hyaluronidase and TGF-β3 enhanced the healing capacity of the meniscus.

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Beijing Municipal Science & Technology Commission

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3