Anterior Cruciate Ligament–Derived Stem Cells Transduced With BMP2 Accelerate Graft-Bone Integration After ACL Reconstruction

Author:

Kawakami Yohei123,Takayama Koji123,Matsumoto Tomoyuki123,Tang Ying1,Wang Bing1,Mifune Yutaka123,Cummins James H.1245,Warth Ryan J.45,Kuroda Ryosuke3,Kurosaka Masahiro3,Fu Freddie H.1,Huard Johnny1245

Affiliation:

1. Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

2. Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

3. Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan

4. Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA

5. Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA

Abstract

Background: Strong graft-bone integration is a prerequisite for successful graft remodeling after reconstruction of the anterior cruciate ligament (ACL) using soft tissue grafts. Novel strategies to accelerate soft tissue graft-bone integration are needed to reduce the need for bone-tendon-bone graft harvest, reduce patient convalescence, facilitate rehabilitation, and reduce total recovery time after ACL reconstruction. Hypothesis: The application of ACL-derived stem cells with enhanced expression of bone morphogenetic protein 2 (BMP2) onto soft tissue grafts in the form of cell sheets will both accelerate and improve the quality of graft-bone integration after ACL reconstruction in a rat model. Study Design: Controlled laboratory study. Methods: ACL-derived CD34+ cells were isolated from remnant human ACL tissues, virally transduced to express BMP2, and embedded within cell sheets. In a rat model of ACL injury, bilateral single-bundle ACL reconstructions were performed, in which cell sheets were wrapped around tendon autografts before reconstruction. Four groups containing a total of 48 rats (96 knees) were established (n = 12 rats; 24 knees per group): CD34+BMP2 (100%), CD34+BMP2 (25%), CD34+ (untransduced), and a control group containing no cells. Six rats from each group were euthanized 2 and 4 weeks after surgery, and each graft was harvested for immunohistochemical and histological analyses. The remaining 6 rats in each group were euthanized at 4 and 8 weeks to evaluate in situ tensile load to failure in each femur-graft-tibia complex. Results: In vitro, BMP2 transduction promoted the osteogenic differentiation of ACL-derived CD34+ cells while retaining their intrinsic multipotent capabilities. Osteoblast densities were greatest in the BMP2 (100%) and BMP2 (25%) groups. Bone tunnels in the CD34+BMP2 (100%) and CD34+BMP2 (25%) groups had the smallest cross-sectional areas according to micro–computed tomography analyses. Graft-bone integration occurred most rapidly in the CD34+BMP2 (25%) group. Tensile load to failure was significantly greater in the groups containing stem cells at 4 and 8 weeks after surgery. Tensile strength was greatest in the CD34+BMP2 (100%) group at 4 weeks, and in the CD34+BMP2 (25%) group at 8 weeks. Conclusion: ACL-derived CD34+ cells transduced with BMP2 accelerated graft-bone integration after ACL reconstruction using soft tissue autografts in a rat model, as evidenced by improved histological appearance and graft-bone interface biology along with tensile load to failure at each time point up to 8 weeks after surgery. Clinical Relevance: A primary disadvantage of using soft tissue grafts for ACL reconstruction is the prolonged time required for bony ingrowth, which delays the initiation of midsubstance graft remodeling. The lack of consistent correlation between the appearance of a “healed” ACL on postoperative magnetic resonance imaging and readiness to return to sport results in athletes being released to sport before the graft is ready to handle high-intensity loading. Therefore, it is desirable to identify strategies that accelerate graft-bone integration, which would reduce the time to biologic fixation, improve the reliability of biologic fixation, allow for accelerated rehabilitation, and potentially reduce the incidence of early graft pullout and late midsubstance failure.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3