Validation of Noncontact Anterior Cruciate Ligament Tears Produced by a Mechanical Impact Simulator Against the Clinical Presentation of Injury

Author:

Bates Nathaniel A.123,Schilaty Nathan D.123,Nagelli Christopher V.4,Krych Aaron J.12,Hewett Timothy E.1234

Affiliation:

1. Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA

2. Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA

3. Sports Medicine Center, Mayo Clinic, Rochester, Minnesota, USA

4. Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA

Abstract

Background: Anterior cruciate ligament (ACL) injuries are catastrophic events that affect athletic careers and lead to long-term degenerative knee changes. As injuries are believed to occur within the first 50 milliseconds after initial contact during a rapid deceleration task, impact simulators that rapidly deliver impulse loads to cadaveric specimens have been developed. However, no impactor has reproducibly and reliably created ACL injures in a distribution that mimics clinical observation. Purpose: To better understand ACL injury patterns through a cadaveric investigation that applied in vivo–measured external loads to the knee during simulated landings. Study Design: Controlled laboratory study. Methods: A novel mechanical impact simulator reproduced kinetics from in vivo–recorded drop landing tasks on 45 cadaveric knees. Specimens were exposed to a randomized order of variable knee abduction moment, anterior tibial shear, and internal tibial rotation loads before the introduction of an impulse load at the foot. This process was repeated until a hard or soft tissue injury was induced on the joint. Injuries were assessed by an orthopaedic surgeon, and ligament strain was recorded by implanted strain gauges. Results: The mechanical impact simulator induced ACL injuries in 87% of specimens, with medial collateral ligament (MCL) injuries in 31%. ACL tear locations were 71% femoral side, 21% midsubstance, and 9% tibial side. Peak strain before failure for ACL-injured specimens was 15.3% ± 8.7% for the ACL and 5.1% ± 5.6% for the MCL ( P < .001). Conclusion: The ACL injuries induced by the mechanical impact simulator in the present study have provided clinically relevant in vitro representations of in vivo ACL injury patterns as cited in the literature. Additionally, current ligament strains corroborate the literature to support disproportionate loading of the ACL relative to the MCL during athletic tasks. Clinical Relevance: These findings indicate that the mechanical impact simulator is an appropriate model for examining independent mechanical variables, treatment techniques, and preventive interventions during athletic tasks leading up to and including an ACL injury. Accordingly, this system can be utilized to further parse out contributing factors to an ACL injury as well as assess the shortcomings of ACL reconstruction techniques in a dynamic, simulated environment that is better representative of in vivo injury scenarios.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3