Importance of Tibial Slope for Stability of the Posterior Cruciate Ligament—Deficient Knee

Author:

Giffin J. Robert1,Stabile Kathryne J.2,Zantop Thore3,Vogrin Tracy M.4,Woo Savio L-Y.5,Harner Christopher D.6

Affiliation:

1. Department of Orthopaedic Surgery, University of Western Ontario, London, Ontario, Canada

2. Department of Orthopaedic Surgery, Wake Forest University, Winston-Salem, North Carolina

3. Department of Trauma, Hand, and Reconstructive Surgery, Westfalische Wilhelms-University Münster, Münster, Germany

4. Department of Emergency Medicine, Mercy Hospital of Pittsburgh, Pittsburgh, Pennsylvania

5. Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania

6. Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania

Abstract

Background Previous studies have shown that increasing tibial slope can shift the resting position of the tibia anteriorly. As a result, sagittal osteotomies that alter slope have recently been proposed for treatment of posterior cruciate ligament (PCL) injuries. Hypotheses Increasing tibial slope with an osteotomy shifts the resting position anteriorly in a PCL-deficient knee, thereby partially reducing the posterior tibial “sag” associated with PCL injury. This shift in resting position from the increased slope causes a decrease in posterior tibial translation compared with the PCL-deficient knee in response to posterior tibial and axial compressive loads. Study Design Controlled laboratory study. Methods Three knee conditions were tested with a robotic universal force-moment sensor testing system: intact, PCL-deficient, and PCL-deficient with increased tibial slope. Tibial slope was increased via a 5-mm anterior opening wedge osteotomy. Three external loading conditions were applied to each knee condition at 0°, 30°, 60°, 90°, and 120° of knee flexion: (1) 134-N anterior-posterior (A-P) tibial load, (2) 200-N axial compressive load, and (3) combined 134-N A-P and 200-N axial loads. For each loading condition, kinematics of the intact knee were recorded for the remaining 5 degrees of freedom (ie, A-P, medial-lateral, and proximal-distal translations, internal-external and varus-valgus rotations). Results Posterior cruciate ligament deficiency resulted in a posterior shift of the tibial resting position to 8.4 ± 2.6 mm at 90° compared with the intact knee. After osteotomy, tibial slope increased from 9.2° ± 1.0° in the intact knee to 13.8° ± 0.9°. This increase in slope reduced the posterior sag of the PCL-deficient knee, shifting the resting position anteriorly to 4.0 ± 2.0 mm at 90°. Under a 200-N axial compressive load with the osteotomy, an additional increase in anterior tibial translation to 2.7 ± 1.7 mm at 30° was observed. Under a 134-N A-P load, the osteotomy did not significantly affect total A-P translation when compared with the PCL-deficient knee. However, because of the anterior shift in resting position, there was a relative decrease in posterior tibial translation and increase in anterior tibial translation. Conclusion Increasing tibial slope in a PCL-deficient knee reduces tibial sag by shifting the resting position of the tibia anteriorly. This sag is even further reduced when the knee is subjected to axial compressive loads. Clinical Relevance These data suggest that increasing tibial slope may be beneficial for patients with PCL-deficient knees.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3