Excursion of the Rotator Cuff Under the Acromion

Author:

Flatow Evan L.1,Soslowsky Louis J.2,Ticker Jonathan B.1,Pawluk Robert J.1,Hepler Matthew1,Ark Jon1,Mow Van C.1,Bigliani Louis U.1

Affiliation:

1. Orthopaedic Research Laboratory, New York Orthopaedic Hospital, Columbia-Presbyterian Medical Center, New York, New York

2. Orthopaedic Research Laboratories, the University of Michigan, Ann Arbor, Michigan

Abstract

Nine fresh-frozen, human cadaveric shoulders were el evated in the scapular plane in two different humeral rotations by applying forces along action lines of rotator cuff and deltoid muscles. Stereophotogrammetry deter mined possible regions of subacromial contact using a proximity criterion; radiographs measured acromio humeral interval and position of greater tuberosity. Con tact starts at the anterolateral edge of the acromion at 0° of elevation; it shifts medially with arm elevation. On the humeral surface, contact shifts from proximal to dis tal on the supraspinatus tendon with arm elevation. When external rotation is decreased, distal and poste rior shift in contact is noted. Acromial undersurface and rotator cuff tendons are in closest proximity between 60° and 120° of elevation; contact was consistently more pronounced for Type III acromions. Mean acro miohumeral interval was 11.1 mm at 0° of elevation and decreased to 5.7 mm at 90°, when greater tuberosity was closest to the acromion. Radiographs show bone- to-bone relationship; stereophotogrammetry assesses contact on soft tissues of the subacromial space. Con tact centers on the supraspinatus insertion, suggesting altered excursion of the greater tuberosity may initially damage this rotator cuff region. Conditions limiting ex ternal rotation or elevation may also increase rotator cuff compression. Marked increase in contact with Type III acromions supports the role of anterior acromioplasty when clinically indicated, usually in older patients with primary impingement.

Publisher

SAGE Publications

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3