Deep Learning for Pneumothorax Detection on Chest Radiograph: A Diagnostic Test Accuracy Systematic Review and Meta Analysis

Author:

Katzman Benjamin D.1ORCID,Alabousi Mostafa2ORCID,Islam Nabil3,Zha Nanxi2,Patlas Michael N.4ORCID

Affiliation:

1. Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada

2. Department of Medical Imaging, McMaster University, Hamilton, ON, Canada

3. Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada

4. Department of Medical Imaging, University of Toronto, Toronto, ON, Canada

Abstract

Background: Pneumothorax is a common acute presentation in healthcare settings. A chest radiograph (CXR) is often necessary to make the diagnosis, and minimizing the time between presentation and diagnosis is critical to deliver optimal treatment. Deep learning (DL) algorithms have been developed to rapidly identify pathologic findings on various imaging modalities. Purpose: The purpose of this systematic review and meta-analysis was to evaluate the overall performance of studies utilizing DL algorithms to detect pneumothorax on CXR. Methods: A study protocol was created and registered a priori (PROSPERO CRD42023391375). The search strategy included studies published up until January 10, 2023. Inclusion criteria were studies that used adult patients, utilized computer-aided detection of pneumothorax on CXR, dataset was evaluated by a qualified physician, and sufficient data was present to create a 2 × 2 contingency table. Risk of bias was assessed using the QUADAS-2 tool. Bivariate random effects meta-analyses and meta-regression modeling were performed. Results: Twenty-three studies were selected, including 34 011 patients and 34 075 CXRs. The pooled sensitivity and specificity were 87% (95% confidence interval, 81%, 92%) and 95% (95% confidence interval, 92%, 97%), respectively. The study design, use of an institutional/public data set and risk of bias had no significant effect on the sensitivity and specificity of pneumothorax detection. Conclusions: The relatively high sensitivity and specificity of pneumothorax detection by deep-learning showcases the vast potential for implementation in clinical settings to both augment the workflow of radiologists and assist in more rapid diagnoses and subsequent patient treatment.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3