Pyrolysis, Kinetic and Kinetic Model Study of Epoxidized Natural Rubber

Author:

Alwaan I.M.12,Hassan A.1

Affiliation:

1. Universiti Teknologi Malaysia, Johor, Malaysia

2. University of Kufa, Najaf, Iraq

Abstract

Pyrolysis, kinetics properties and a kinetic model of epoxidized natural rubber (ENR-50) were studied in this work by differential scanning calorimeter (DSC) and thermogravimetry analysis (TGA/DTGA) tests. DSC results indicated that the ENR-50 rubber remained still, without degradation, until 354.65°C and ENR-50 degrades at temperatures ranging between 354.65 to 420°C at a constant heat rate (10°C/min). The degradation enthalpy was (-1241.8 J/g) and the remaining ash was 1.48% at 500°C. Degradation kinetics were studied according to Kissinger, Flynn-Wall-Ozawa, Friedman and Kissinger-Akahira-Sunose methods at different heating rates in nitrogen, at a flow rate of 20 ml/min. Activation energies and the pre-exponential factor were evaluated from the slope of Flynn-Wall-Ozawa, Friedman and Kissinger-Akahira-Sunose plots at conversions between 10 and 90%. The activation energy was also calculated by the Kissinger's method and it was equal to 41.735 kJ mol−1. Criado's method was employed to investigate the kinetic model, g(α) of ENR-50 and it was found that the diffusion model (D1) agreed with ENR-50 degradation data.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3