A study on the effectiveness of varying curative ratio to optimize performance of hydroxy terminated polybutadiene (HTPB) and hexamethylene diisocynate (HDI) based polyurethane elastomers

Author:

Tahir Naveed Ahmad1ORCID,Othman Nadras1,Zubir Syazana Ahmad1ORCID

Affiliation:

1. School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia

Abstract

Polyurethanes possess exceptional performance traits and are employed in almost every sphere of life. Extended pot life up to 6–8 h with acceptable performance to produce larger composite propellants is a pre-requisite. Aromatic diisocyanates being more reactive gives inadequate pot life (3–4 h) and aliphatic diisocyanates gives unrealistic pot life (20–24 h). Curative ratio (R = NCO/OH) is the most frequently used to tailor the performance properties of polyurethanes. In this research work, hexamethylene diisocyanate (HDI),an aliphatic diisocynate with symmetric structure and a moderate reactivity has been utilized as a curative to extend the pot life up to 6–8 h with acceptable performance traits by varying the curative ratio from 1.0 to 2.0. The synthesized PU elastomers showed a reasonable pot life of 437 min at NCO/OH = 1.0 that decreased to 305 min when curative ratio increased to 2.0. The effectiveness of curative ratio variation to fine tune physical, mechanical and thermal properties was gauged. With increasing curative ratio, the degree of hydrogen bonding and microphase separation increased. Moreover, for these polyurethanes, tensile strength increased from 0.519 MPa to 1.249 MPa, and elongation at break declined from 1068 % to 438 %. The structural integrity of composite propellants is dependent upon the mechanical properties and the curing ratio = 1.6 is considered as optimum because it provides a good balance between the soft segment and the hard segments and gives polyurethane elastomers a good combination of mechanical properties and hardness. Thermal stability in terms of onset degradation temperature (T5) also increased from 345 to 364°C.

Funder

Ministry of Higher Education Malaysia

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3