Overcoming platinum-acquired resistance in ovarian cancer patient-derived xenografts

Author:

Ricci Francesca1,Brunelli Laura2,Affatato Roberta1,Chilà Rosaria1,Verza Martina3,Indraccolo Stefano3,Falcetta Francesca4,Fratelli Maddalena4,Fruscio Robert5,Pastorelli Roberta2,Damia Giovanna1

Affiliation:

1. Department of Oncology, Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy

2. Department of Environmental Health Sciences, Laboratory of Mass Spectometry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy

3. Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy

4. Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy

5. Department of Medicine and Surgery, University of Milan Bicocca, 20900, Monza, Italy

Abstract

Background: Epithelial ovarian cancer is the most lethal gynecological cancer and the high mortality is due to the frequent presentation at advanced stage, and to primary or acquired resistance to platinum-based therapy. Methods: We developed three new models of ovarian cancer patient-derived xenografts (ovarian PDXs) resistant to cisplatin (cDDP) after multiple in vivo drug treatments. By different and complementary approaches based on integrated metabolomics (both targeted and untargeted mass spectrometry-based techniques), gene expression, and functional assays (Seahorse technology) we analyzed and compared the tumor metabolic profile in each sensitive and their corresponding cDDP-resistant PDXs. Results: We found that cDDP-sensitive and -resistant PDXs have a different metabolic asset. In particular, we found, through metabolomic and gene expression approaches, that glycolysis, tricarboxylic acid cycle and urea cycle pathways were deregulated in resistant versus sensitive PDXs. In addition, we observed that oxygen consumption rate and mitochondrial respiration were higher in resistant PDXs than in sensitive PDXs under acute stress conditions. An increased oxidative phosphorylation in cDDP-resistant sublines led us to hypothesize that its interference could be of therapeutic value. Indeed, in vivo treatment of metformin and cDDP was able to partially reverse platinum resistance. Conclusions: Our data strongly reinforce the idea that the development of acquired cDDP resistance in ovarian cancer can bring about a rewiring of tumor metabolism, and that this might be exploited therapeutically.

Publisher

SAGE Publications

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3