In Silico Prediction of Human Clinical Pharmacokinetics with ANDROMEDA by Prosilico: Predictions for an Established Benchmarking Data Set, a Modern Small Drug Data Set, and a Comparison with Laboratory Methods

Author:

Fagerholm Urban1ORCID,Hellberg Sven1,Alvarsson Jonathan2,Spjuth Ola12

Affiliation:

1. Prosilico AB, Huddinge, Sweden

2. Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden

Abstract

There is an ongoing aim to replace animal and in vitro laboratory models with in silico methods. Such replacement requires the successful validation and comparably good performance of the alternative methods. We have developed an in silico prediction system for human clinical pharmacokinetics, based on machine learning, conformal prediction and a new physiologically-based pharmacokinetic model, i.e. ANDROMEDA. The objectives of this study were: a) to evaluate how well ANDROMEDA predicts the human clinical pharmacokinetics of a previously proposed benchmarking data set comprising 24 physicochemically diverse drugs and 28 small drug molecules new to the market in 2021; b) to compare its predictive performance with that of laboratory methods; and c) to investigate and describe the pharmacokinetic characteristics of the modern drugs. Median and maximum prediction errors for the selected major parameters were ca 1.2 to 2.5-fold and 16-fold for both data sets, respectively. Prediction accuracy was on par with, or better than, the best laboratory-based prediction methods (superior performance for a vast majority of the comparisons), and the prediction range was considerably broader. The modern drugs have higher average molecular weight than those in the benchmarking set from 15 years earlier ( ca 200 g/mol higher), and were predicted to (generally) have relatively complex pharmacokinetics, including permeability and dissolution limitations and significant renal, biliary and/or gut-wall elimination. In conclusion, the results were overall better than those obtained with laboratory methods, and thus serve to further validate the ANDROMEDA in silico system for the prediction of human clinical pharmacokinetics of modern and physicochemically diverse drugs.

Publisher

SAGE Publications

Subject

Medical Laboratory Technology,Toxicology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3