Acoustic Rhinometry in Healthy Humans: Accuracy of Area Estimates and Ability to Quantify Certain Anatomic Structures in the Nasal Cavity

Author:

Cankurtaran Mehmet,Çelik Huseyin,Coşkun Mehmet,Hizal Evren,Cakmak Ozcan

Abstract

Objectives: We evaluated the accuracy of acoustic rhinometry (AR) measurements in healthy humans and assessed the ability of AR in quantifying the dimensions of the paranasal sinuses and certain anatomic structures in the nasal cavity. Methods: Twenty nasal passages of 10 healthy adults were examined by AR and computed tomography (CT) before and after decongestion. Actual cross-sectional areas of the nasal cavity and actual locations of the nasal valve, the head of the inferior turbinate, the head of the middle turbinate, the ostia of the frontal and maxillary sinuses, and the choana were determined from CT sections perpendicular to the curved acoustic axis of the nasal passage. Results: The AR-measured cross-sectional areas in the anterior nasal cavity were in reasonable agreement with the corresponding areas determined from CT, whereas AR consistently overestimated the passage areas at locations posterior to the paranasal sinus ostia. The nasal valve was identified as a pronounced minimum on the AR area-distance curve. However, AR did not discretely identify the head of the inferior turbinate, the head of the middle turbinate, or the choana. Conclusions: The local minima on the AR area-distance curve beyond the nasal valve are caused by acoustic resonances in the nasal cavity, and do not correspond to any anatomic structure. The AR area overestimation beyond the paranasal sinus ostia is due to the interaction between the nasal cavity and the paranasal sinuses, rather than to sound loss into the sinuses. Acoustic rhinometry provides no quantitative information on ostium size or sinus volume in either non-decongested or decongested nasal cavities.

Publisher

SAGE Publications

Subject

General Medicine,Otorhinolaryngology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3