Affiliation:
1. College of Chemical and Environmental Engineering, Shanghai Institute of Technology, China
2. College of Environmental Science and Engineering, Donghua University, China
3. College of Chemical and Environmental Engineering, Shanghai Institute of Technology, China; College of Environmental Science and Engineering, Donghua University, China
Abstract
In this study, a magnetically separable Fe3O4/CeO2 (Fe/Ce) nanocomposite is synthesized by sol-precipitation method and characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive spectrometer , vibrating sample magnetometer, atomic absorption spectrometer, and zeta potential measurements. The Fe/Ce is used as sorbent to adsorb anionic dye of Acid Black 210 (AB210) from aqueous solutions, and the maximum adsorption capacity is about 90.50 mg/g, which is six times higher than that of the commercial CeO2. Dependence of absorption performance on essential factors, such as initial dye concentration, temperature and initial pH, are experimentally examined. The result shows that the adsorption kinetic of Fe/Ce follows pseudo-second-order model and the adsorption isotherm is well described by the Langmuir adsorption model. Furthermore, the thermodynamic analysis indicates that the adsorption of Fe/Ce for AB210 is spontaneous and endothermic.
Subject
Surfaces and Interfaces,General Chemical Engineering,General Chemistry
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献