Methanol-modified ultra-fine magnetic orange peel powder biochar as an effective adsorbent for removal of ibuprofen and sulfamethoxazole from water

Author:

Ai Tian1,Jiang Xiaojun21ORCID,Zhong Zhenxia31,Li Dachao41,Dai Shujuan1ORCID

Affiliation:

1. School of Mining Engineering, University of Science and Technology Liaoning, PR China

2. School of Chemical Engineering, University of Science and Technology Liaoning, PR China

3. Technical Development (Engineering) Department, Shandong Hualu Hengsheng Chemical Co., Ltd, PR China

4. Production Department, Hengli Petrochemical (Dalian) Co., Ltd, PR China

Abstract

The efficient capture of drug metabolites from aquatic environments has been recognized as an essential task for environmental protection. A methanol-modified ultra-fine magnetic biochar (CH3OH-OP-char/Fe3O4) was prepared from orange peel powder using ball milling, and its adsorption behaviors for ibuprofen and sulfamethoxazole were evaluated. The obtained materials were characterized by laser particle size analyzer, EA, ICP-OES, VSM, BET, TG-DTG, and FTIR. Furthermore, the experiments were conducted to study the vital operating parameters such as solution pH (2.0–11.0), contact time (0.5–240 min), initial drug concentration (0.5–100 mg/L), and temperatures (15–40°C) on the removal process. The results showed that the adsorption of IBP and sulfamethoxazole on CH3OH-OP-char/Fe3O4 was highly pH-dependent. Kinetic studies indicated that physisorption was the dominant adsorption mechanism, and film diffusion played a vital role in adsorption onto CH3OH-OP-char/Fe3O4. Equilibrium data were fitted well with the Langmuir isotherm model, implying monolayer adsorption. The adsorption process was spontaneous and endothermic due to the thermodynamic calculation, and high temperatures were favorable to the adsorption process.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3