A Critical Evaluation of Newer β-Lactam Antibiotics for Treatment of Pseudomonas aeruginosa Infections

Author:

Blomquist Kathleen C.1ORCID,Nix David E.12ORCID

Affiliation:

1. Department of Pharmacy Practice & Science, University of Arizona, Tucson, Arizona, USA

2. Department of Medicine, Division of Infectious Diseases, University of Arizona, Tucson, Arizona, USA

Abstract

Objective: This article critically evaluates common Pseudomonas aeruginosa resistance mechanisms and the properties newer β-lactam antimicrobials possess to evade these mechanisms. Data Sources: An extensive PubMed, Google Scholar, and ClinicalTrials.gov search was conducted (January 1995 to July 2020) to identify relevant literature on epidemiology, resistance mechanisms, antipseudomonal agents, newer β-lactam agents, and clinical data available pertaining to P aeruginosa. Study Selection and Data Extraction: Relevant published articles and package inserts were reviewed for inclusion. Data Synthesis: Therapeutic options to treat P aeruginosa infections are limited because of its intrinsic and acquired resistance mechanisms. The goal was to identify advances with newer β-lactams and characterize improvements in therapeutic potential for P aeruginosa infections. Relevance to Patient Care and Clinical Practice: Multidrug-resistant (MDR) P aeruginosa isolates are increasingly encountered from a variety of infections. This review highlights potential activity gains of newer β-lactam antibacterial drugs and the current clinical data to support their use. Pharmacists will be asked to recommend or evaluate the use of these agents and need to be aware of information specific to P aeruginosa, which differs from experience derived from Enterobacterales infections. Conclusions: Newer agents, including ceftazidime-avibactam, ceftolozane-tazobactam, imipenem-relebactam, and cefiderocol, are useful for the treatment of MDR P aeruginosa infections. These agents offer improved efficacy and less toxicity compared with aminoglycosides and polymyxins and can be used for pathogens that are resistant to first-line antipseudomonal β-lactams. Selection of one agent over another should consider availability, turnaround of susceptibility testing, and product cost. Efficacy data specific for pseudomonal infections are limited, and there are no direct comparisons between the newer agents.

Publisher

SAGE Publications

Subject

Pharmacology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3