Asynchronous Pumping of a Pulsatile Ventricular Assist Device in a Pediatric Anastomosis Model

Author:

Good Bryan C.1,Weiss William J.12,Deutsch Steven1,Manning Keefe B.12ORCID

Affiliation:

1. Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA

2. Department of Surgery, Penn State Hershey Medical Center, Hershey, PA, USA

Abstract

Background: Both pulsatile and continuous flow ventricular assist devices are being developed for pediatric congenital heart defect patients. Pulsatile devices are often operated asynchronously with the heart in either an “automatic” or a fixed beat rate mode. However, most studies have only investigated synchronized ejection. Methods: A previously validated viscoelastic blood solver is used to investigate the parameters of pulsatility, power loss, and graft failure in a pediatric aortic anastomosis model. Results: Pulsatility was highest with synchronized flow and lowest at a 90° phase shift. Power loss decreased at 90° and 180° phase shifts but increased at a 270° phase shift. Similar regions of potential intimal hyperplasia and graft failure were seen in all cases but with phase-shifted ejection leading to higher wall shear stress on the anastomotic floor and oscillatory shear index on the anastomotic toe. Conclusion: The ranges of pulsatility and hemodynamics that can result clinically using asynchronous pulsatile devices were investigated in a pediatric anastomosis model. These results, along with the different postoperative benefits of pump modulation, can be used to design an optimal weaning protocol.

Funder

National Heart, Lung, and Blood Institute

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,General Medicine,Pediatrics, Perinatology, and Child Health,Surgery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3