Real-Time Detection of Circulating Thrombi in an Extracorporeal Circuit Using Doppler Ultrasound: In-Vitro Proof of Concept Study

Author:

Peer Syed Murfad1ORCID,Desai Manan2ORCID,Bukhari Syed2,Delores Yunchuan3,Jonas Richard2,Sinha Pranava1ORCID

Affiliation:

1. Department of Pediatric Cardiac Surgery, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA

2. Department of Cardiovascular Surgery, Children's National Hospital, Washington, DC, USA

3. Department of Laboratory Medicine and Hematology, Children's National Hospital, Washington, DC, USA

Abstract

Background Thromboembolic stroke continues to be by far the most common severe adverse event in patients supported with mechanical circulatory assist devices. Feasibility of using Doppler ultrasound to detect circulating thrombi in an extracorporeal circuit was investigated. Methods A mock extracorporeal circulatory loop of uncoated cardiopulmonary bypass tubing and a roller pump was setup. A Doppler bubble counter was used to monitor the mean ultrasound backscatter signal (MUBS). The study involved two sets of experiments. In Scenario 1, the circuit was sequentially primed with human blood components, and the MUBS was measured. In Scenario 2, the circuit was primed with heparinized fresh porcine blood, and the MUBS was measured. Fresh blood clots (diameter <1,000 microns, 1,000-5,000 microns, >5,000 microns) were injected into the circuit followed by protamine administration. Results In Scenario 1 (n = 3), human platelets produced a baseline MUBS of 1.5 to 3.5 volts/s. Addition of packed human red blood cells increased the baseline backscatter to 17 to 21 volts/s. Addition of fresh frozen plasma did not change the baseline backscatter. In Scenario 2 (n = 5), the blood-primed circuit produced a steady baseline MUBS. Injection of the clots resulted in abrupt and transient increase (range: 3-30 volts/s) of the baseline MUBS. Protamine administration resulted in a sustained increase of MUBS followed by circuit thrombosis. Conclusions Doppler ultrasound may be used for real-time detection of circulating solid microemboli in the extracorporeal circuit. This technology could potentially be used to design safety systems that can reduce the risk of thromboembolic stroke associated with mechanical circulatory support therapy.

Funder

Cohen-Funger Distinguished Professorship

National Institutes of Health

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,General Medicine,Pediatrics, Perinatology and Child Health,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3