Testing Iron and Zinc Bioavailability in Genetically Enriched Beans (Phaseolus Vulgaris L.) and Rice (Oryza Sativa L.) in a Rat Model

Author:

Welch Ross M.1,House William A.1,Beebe Steven2,Senadhira Dharmawansa3,Gregorio Glenn B.4,Cheng Z.1

Affiliation:

1. US Department of Agriculture-Agricultural Research Service (USDA-ARS), US Plant, Soil, and Nutrition Laboratory at Cornell University, Ithaca, New York, USA.

2. Centro Internacional de Agricultura Tropical in Cali, Colombia.

3. Institute.

4. International Rice Research Institute in Manila, Philippines

Abstract

A rat model was used to determine the bioavailability of iron and zinc in bean seeds and rice grain from enriched genotypes of these globally important staple foods. Seed and grain from the genotypes tested (intrinsically radiolabelled with either 59Fe or 65Zn) were cooked, homogenized in water, and lyophilized to dryness. The dried, radiolabelled powder was fed to young male rats in single meals. Bioavailability was calculated from the amount of radiolabelled iron and zinc retained in the rats over a 10-day period as determined each day by whole-body gamma spectrometry assay. The data collected demonstrate that increasing the amount of iron or zinc in enriched rice grain and bean seed significantly increases the amount of iron or zinc bioavailable to rats. Although a rat model is not ideal for determining iron and zinc bioavailability to humans, because rats are much more efficient at absorbing iron and zinc from plant foods than humans, rats can be used to give relative estimates of bioavailable iron and zinc in plant foods. These estimates can be used to rank promising genotypes of staple foods for use in later feeding trials with humans, greatly reducing the numbers of genotypes that would have to be tested in humans without use of the rat model. Ultimately, because of the complexities of determining the bioavailability to humans of iron and zinc in plant foods, human feeding trials performed under free-living conditions should be conducted with the most promising genotypes before these genotypes are released for distribution to breeding programmes worldwide

Publisher

SAGE Publications

Subject

Nutrition and Dietetics,Geography, Planning and Development,Food Science

Reference9 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3