Review: Molecular mechanisms of endotoxin tolerance

Author:

Hongkuan Fan 1,Cook James A.2

Affiliation:

1. Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA

2. Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA,

Abstract

The phenomenon of endotoxin tolerance has been widely investigated, but to date, the molecular mechanisms of endotoxin tolerance remain to be resolved clearly. The discovery of the Toll-like receptor (TLR) family as the major receptors for lipopolysaccharide (LPS) and other bacterial products has prompted a resurgence of interest in endotoxin tolerance mechanisms. Changes of cell surface molecules, signaling proteins, pro-inflammatory and anti -inflammatory cytokines and other mediators have been examined. During tolerance expression of LPS-binding protein (LBP), CD14, myeloid differentiation protein-2 (MD-2) and TLR2 are unchanged or up-regulated, whereas TLR4 is transiently suppressed or unchanged. Proximal post-receptor signaling proteins that are altered in tolerance include augmented degradation of interleukin-1 receptor-associated kinase (IRAK), and decreased TLR4-myeloid differentiation factor 88 (MyD88) and IRAK-MyD88 association. Tolerance has also been shown to be associated with decreased Gi protein content and activity, decreased protein kinase C (PKC) activity, reduction in mitogen-activated protein kinase (MAP kinase) activity, and reduced activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB) induced gene transactivation. However, not all signaling proteins and pathways are suppressed in tolerance and induction of specific anti-inflammatory proteins and signaling pathways may serve important counter inflammatory functions. The latter include induction of IRAK-M and suppressor of cytokine-signaling-1 (SOCS-1), phosphoinositide-3-kinase (PI3K) signaling, and increased or maintained expression of inhibitor-κB (IκB) isoforms. Also at the nuclear level, increase in the NFκB subunit p50 homodimer expression and increased activation of peroxisome-proliferatoractivated receptors-γ (PPARγ) have been linked to tolerance phenotype. Although there are species and cellular variations in manifestation of the LPS tolerant phenotype, it is clear that the tolerance phenomena have evolved as a complex orchestrated counter regulatory response to inflammation.

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3