Vegetation diversity in response to monsoonal variability in the Eastern Himalaya, India over the past ~13 000 yrs

Author:

Dubey Jyotsna12ORCID,Ali S Nawaz13ORCID,Quamar Mohammad Firoze13ORCID,Singh Priyanka1,Morthekai P13,Ghosh Ruby1,Sharma Anupam1,Srivastava Vaibhava2

Affiliation:

1. Birbal Sahni Institute of Palaeosciences (BSIP), India

2. Department of Geology, Faculty of Science, Banaras Hindu University (BHU), India

3. Academy of Scientific and Innovative Research (AcSIR), India

Abstract

Monsoon precipitation plays a crucial role in shaping the diversity of vegetation in the Himalayas, both in terms of temporal and spatial distribution. While palynology has traditionally been employed to reconstruct the past climate of the Himalaya, there has been limited understanding of how monsoon-related changes affect the structure and distribution of vegetation. To address this, we analysed pollen data from a 3 m deep sedimentary profile in the higher Sikkim Himalaya to reconstruct monsoon driven changes in vegetation diversity. Our results show a highly fluctuating trend of pollen and diversity parameters at late-Pleistocene-Holocene transition for which fluctuating hydroclimatic conditions and differential pollen preservation in coarser sediments is attributed. During the Early Holocene (10,438–7934 cal yrs BP) favourable hydroclimatic conditions led to a rapid expansion of mixed broad-leaved forests, marked by higher values of richness and alpha diversity. Between 7934 and 5481 cal yrs BP, the region experienced moderate hydroclimatic conditions that facilitated expansion and diversification of woody taxa, and correlated with the global Holocene Climate Optimum (HCO). Conversely, from 5481 to3949 cal yrs BP, declining total pollen count (TPC), species richness, and alpha diversity indicates significant shifts in vegetation composition under deteriorating climatic conditions, which corresponds with the 4.2 ka event worldwide. From 3949 to 2049 cal yrs BP, an increasing yet variable trend in TPC and diversity indices, suggests warm-humid conditions prevailed in the region. During the last 1086 cal yrs, an increasing trend is recorded in the palyno assemblage and diversity parameters suggesting ameliorating climate, matches well with the Mediaeval Climate Anomaly (MCA). Our inferences suggest that the palyno assemblage and diversity parameters are quiet sensitive to warm and humid conditions.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3