Pronounced variations in Fagus grandifolia abundances in the Great Lakes region during the Holocene

Author:

Wang Yue1,Gill Jacquelyn L.2,Marsicek Jeremiah3,Dierking Anna1,Shuman Bryan3,Williams John W1

Affiliation:

1. University of Wisconsin–Madison, USA

2. University of Maine, USA

3. University of Wyoming, USA

Abstract

Mesic tree species such as Fagus grandifolia and Tsuga canadensis experienced multiple abundance declines in eastern North America during the last 8000 years, but the causes remain unclear. This paper presents a new sub-centennial record of Holocene vegetation, fire and sedimentological changes at Spicer Lake, IN, to test hypotheses about the role of fire and hydrological variations on shifts in vegetation composition. Four pollen zones are reported: Abies–Picea forests (15–11.8 ka BP), Pinus-dominated mixed forest (11.8–10.6 ka BP), transitional mixed forest (10.6–6.8 ka BP), and deciduous forest characterized by the expansion and high variability of F. grandifolia (after 6.8 ka BP). Macroscopic charcoal indicates five to seven fires between 6.1 and 4.4 ka BP and no fires between 4.4 and 2 ka BP, despite several large declines in F. grandifolia, and more fires after 1.8 ka BP likely linked to declining F. grandifolia abundances after 1.1 ka BP. Six peaks in mineralogenic sediments are suggestive of hydroclimate variability, but do not consistently correspond to shifts in F. grandifolia abundances. A Bayesian change-point analysis of 15 regional F. grandifolia pollen records identifies peak probabilities of events at 4.8 and 1.1 ka BP, similar in timing to variations in T. canadensis at other sites. Hence, fire can be ruled out as a driver of the mid-Holocene declines of F. grandifolia, but more work is needed to confidently establish the regional timing of F. grandifolia declines and to link them to past droughts and T. canadensis declines in eastern North America.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3