Novel voxelwise residual analysis of [11C]raclopride PET data improves detection of low-amplitude dopamine release

Author:

Bevington Connor WJ1ORCID,Hanania Jordan U1ORCID,Ferraresso Giovanni2,Cheng Ju-Chieh (Kevin)13,Pavel Alexandra3,Su Dongning4,Stoessl A Jon35,Sossi Vesna1ORCID

Affiliation:

1. Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada

2. Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada

3. Pacific Parkinson’s Research Centre, University of British Columbia, Vancouver, Canada

4. Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

5. Faculty of Medicine, Division of Neurology, University of British Columbia, Vancouver, Canada

Abstract

Existing methods for voxelwise transient dopamine (DA) release detection rely on explicit kinetic modeling of the [11C]raclopride PET time activity curve, which at the voxel level is typically confounded by noise, leading to poor performance for detection of low-amplitude DA release-induced signals. Here we present a novel data-driven, task-informed method—referred to as Residual Space Detection (RSD)—that transforms PET time activity curves to a residual space where DA release-induced perturbations can be isolated and processed. Using simulations, we demonstrate that this method significantly increases detection performance compared to existing kinetic model-based methods for low-magnitude DA release (simulated +100% peak increase in basal DA concentration). In addition, results from nine healthy controls injected with a single bolus of [11C]raclopride performing a finger tapping motor task are shown as proof-of-concept. The ability to detect relatively low magnitudes of dopamine release in the human brain using a single bolus injection, while achieving higher statistical power than previous methods, may additionally enable more complex analyses of neurotransmitter systems. Moreover, RSD is readily generalizable to multiple tasks performed during a single PET scan, further extending the capabilities of task-based single-bolus protocols.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3