Non-classical monocytes promote neurovascular repair in cerebral small vessel disease associated with microinfarctions via CX3CR1

Author:

Lecordier Sarah12,Menet Romain12,Allain Anne-Sophie12,ElAli Ayman12ORCID

Affiliation:

1. Neuroscience Axis, Research Center of CHU de Quebec – Université Laval, Quebec City, QC, Canada

2. Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada

Abstract

Cerebral small vessel disease (cSVD) constitutes a major risk factor for dementia. Monocytes play important roles in cerebrovascular disorders. Herein, we aimed to investigate the contribution of non-classical C-X3-C motif chemokine receptor (CX3CR)1 monocytes to cSVD pathobiology and therapy. To this end, we generated chimeric mice in which CX3CR1 in non-classical monocytes was either functional (CX3CR1GFP/+) or dysfunctional (CX3CR1GFP/GFP). cSVD was induced in mice via the micro-occlusion of cerebral arterioles, and novel immunomodulatory approaches targeting CX3CR1 monocyte production were used. Our findings demonstrate that CX3CR1GFP/+ monocytes transiently infiltrated the ipsilateral hippocampus and were recruited to the microinfarcts 7 days after cSVD, inversely associated with neuronal degeneration and blood-brain barrier (BBB) disruption. Dysfunctional CX3CR1GFP/GFP monocytes failed to infiltrate the injured hippocampus and were associated with exacerbated microinfarctions and accelerated cognitive decline, accompanied with an impaired microvascular structure. Pharmacological stimulation of CX3CR1GFP/+ monocyte generation attenuated neuronal loss and improved cognitive functions by promoting microvascular function and preserving cerebral blood flow (CBF). These changes were associated with elevated levels of pro-angiogenic factors and matrix stabilizers in the blood circulation. The results indicate that non-classical CX3CR1 monocytes promote neurovascular repair after cSVD and constitute a promising target for the development of new therapies.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3