Single-cell RNA sequencing in stroke and traumatic brain injury: Current achievements, challenges, and future perspectives on transcriptomic profiling

Author:

Shi Ruyu1,Chen Huaijun23,Zhang Wenting23ORCID,Leak Rehana K4,Lou Dequan5,Chen Kong5,Chen Jun23ORCID

Affiliation:

1. Department of Human Genetics, School of Public Health, University of Pittsburgh, USA

2. Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA

3. Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA

4. Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA

5. Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA

Abstract

Single-cell RNA sequencing (scRNA-seq) is a high-throughput transcriptomic approach with the power to identify rare cells, discover new cellular subclusters, and describe novel genes. scRNA-seq can simultaneously reveal dynamic shifts in cellular phenotypes and heterogeneities in cellular subtypes. Since the publication of the first protocol on scRNA-seq in 2009, this evolving technology has continued to improve, through the use of cell-specific barcodes, adoption of droplet-based systems, and development of advanced computational methods. Despite induction of the cellular stress response during the tissue dissociation process, scRNA-seq remains a popular technology, and commercially available scRNA-seq methods have been applied to the brain. Recent advances in spatial transcriptomics now allow the researcher to capture the positional context of transcriptional activity, strengthening our knowledge of cellular organization and cell-cell interactions in spatially intact tissues. A combination of spatial transcriptomic data with proteomic, metabolomic, or chromatin accessibility data is a promising direction for future research. Herein, we provide an overview of the workflow, data analyses methods, and pros and cons of scRNA-seq technology. We also summarize the latest achievements of scRNA-seq in stroke and acute traumatic brain injury, and describe future applications of scRNA-seq and spatial transcriptomics.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3