Gelatinolytic activity of autocrine matrix metalloproteinase-9 leads to endothelial de-arrangement in Moyamoya disease

Author:

Blecharz-Lang Kinga G1,Prinz Vincent2,Burek Małgorzata3,Frey Dietmar2,Schenkel Tobias1,Krug Susanne M4,Fromm Michael4,Vajkoczy Peter125

Affiliation:

1. Department of Experimental Neurosurgery, Charité – Universitätsmedizin Berlin, Berlin, Germany

2. Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Berlin, Germany

3. Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany

4. Institute of Clinical Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany

5. Center for Stroke Research Berlin (CSB), Charité – Universitätsmedizin Berlin, Berlin, Germany

Abstract

Moyamoya disease (MMD) is a rare steno-occlusive cerebrovascular disorder. Mechanisms driving the formation of aberrant MMD vessels remain elusive. We collected serum and vessel specimens from MMD and atherosclerotic cerebrovascular disease (ACVD) patients serving as controls due to the same hypoxic stimulus but substantial differences in terms of vascular features. Based on patient material and an in vitro model mimicking ACVD and MMD conditions, matrix metalloproteinase-9 (MMP-9) and vascular-endothelial growth factor (VEGF) were tested for their potential involvement in cerebrovascular disintegration. While serum concentration of both molecules did not significantly differ in both patient groups, excessive collagenase activity and lowered collagen IV protein amount in MMD vessels pointed to a focal MMP-9 activity at the affected vessel sites. We observed overexpressed and autocrinely secreted MMP-9 and VEGF along with disturbances of EC–matrix interactions in MMD but not ACVD serum-treated cEND cells. These seemingly brain-specific effects were partially attenuated by VEGF signaling inhibition suggesting its role in the MMD etiology. In conclusion, our findings support the understanding of the high incidence of hemorrhagic and ischemic events in MMD and provide the basis for novel therapeutic strategies stopping or slowing the development of fragile cerebrovasculature or micro-bleeds characterizing the disease.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3