In vitro safety and efficacy evaluation of a novel hybrid bioartificial liver system with simulated liver failure serum

Author:

Feng Lei1,Wang Yi1,Liu Shusong1,He Guolin1,Cai Lei1,Qin Jiasheng1,Xu Xiaoping1,Jiang Zesheng1,Zhou Chenjie1,Gao Yi12ORCID

Affiliation:

1. Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China

2. State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, P.R. China

Abstract

Background: Acute liver failure (ALF), which can potentially be treated with an artificial liver, is a fatal condition. The purpose of this study was to evaluate the safety and effectiveness of a novel hybrid bioartificial liver system (NHBLS) using simulated liver failure serum in vitro. Methods: The bioreactor in experimental group was cultivated with primary porcine hepatocytes, whereas in control group was not. Next, the simulated liver failure serum was treated using the NHBLS for 10 h. Changes in albumin (ALB), total bilirubin (TBIL), ammonia (Amm), total bile acid (TBA), creatinine (Cr), and blood urea nitrogen (BUN) were measured before treatment (0 h) and every 2 h during treatment. In addition, changes in NHBLS pressures, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lidocaine metabolism were also recorded. Results: The NHBLS worked steadily without unexpected occurrences during the treatment. Blood culture showed no bacterial growth after 7 days, and the endotoxin level was less than 0.5 EU. The TBIL, TBA, Cr, and BUN levels in both groups were markedly lower than those at 0 h ( p < 0.05). The Amm level in experimental group was significantly lower than that in control group ( p < 0.05). NHBLS pressures were also stable, and the hepatocytes in the bioreactor functioned well. Conclusions: The preparation method for the simulated liver failure serum was optimized successfully, and the safety and effectiveness of the NHBLS in vitro were verified. Furthermore, the NHBLS significantly reduced the levels of Amm which can lead to hepatic encephalopathy.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3